[image:]

Data Engineering Guide

Data Lineage and Audit Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Platform Team

1. Executive Summary
Data lineage and audit capabilities are essential for modern data governance. They answer fundamental questions: Where did this data come from? How was it transformed? Who accessed it? These capabilities support regulatory compliance, impact analysis, debugging, and trust in data.
The Value of Lineage and Audit
Regulatory Compliance: Regulations like GDPR, CCPA, and HIPAA require organizations to demonstrate data provenance and access history. Lineage and audit provide the evidence trail.
Impact Analysis: Before modifying a table or pipeline, understand what downstream systems depend on it. Lineage prevents unintended breakage.
Root Cause Analysis: When data quality issues arise, trace back to the source to identify where the problem originated.
Data Trust: Users trust data more when they can see its origin, transformations, and quality checks.
Unity Catalog Capabilities
Unity Catalog automatically captures lineage and audit information:
	Capability
	Description
	Automation

	Table Lineage
	Upstream/downstream table dependencies
	Automatic

	Column Lineage
	Column-level data flow
	Automatic

	Query Lineage
	Notebooks and jobs that created data
	Automatic

	Access Audit
	Every read/write/permission change
	Automatic

2. Data Lineage Architecture
Understanding how lineage is captured helps interpret and extend it.
2.1 Lineage Capture Mechanism
┌───┐
│ LINEAGE CAPTURE FLOW │
├───┤
│ │
│ ┌───┐ │
│ │ DATA TRANSFORMATION │ │
│ │ ┌──────────┐ ┌───────────────┐ ┌──────────────┐ │ │
│ │ │ Notebook │ OR │ DLT Pipeline │ OR │ SQL Query │ │ │
│ │ └────┬─────┘ └───────┬───────┘ └──────┬───────┘ │ │
│ └───────┼──────────────────┼──────────────────┼────────────────────────┘ │
│ │ │ │ │
│ └──────────────────┼──────────────────┘ │
│ ▼ │
│ ┌───┐ │
│ │ SPARK QUERY PLANNER │ │
│ │ Parses SQL/DataFrame operations, creates logical plan │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ LINEAGE EXTRACTION │ │
│ │ Identifies: Source tables, Target table, Column mappings │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ UNITY CATALOG METASTORE │ │
│ │ Stores lineage relationships │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ LINEAGE VISUALIZATION │ │
│ │ Catalog Explorer │ API │ System Tables │ │
│ └───┘ │
│ │
└───┘
2.2 Lineage Graph Structure
Lineage is stored as a directed acyclic graph (DAG):
┌───┐
│ LINEAGE GRAPH EXAMPLE │
├───┤
│ │
│ UPSTREAM (Sources) │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ raw.orders │ │ raw.products │ │ raw.customers│ │
│ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │
│ │ │ │ │
│ └────────────────────┼────────────────────┘ │
│ │ │
│ ▼ │
│ TRANSFORMATION ┌──────────────────┐ │
│ │ silver.orders │ │
│ │ (cleansed) │ │
│ └────────┬─────────┘ │
│ │ │
│ ┌─────────────────────┼─────────────────────┐ │
│ ▼ ▼ ▼ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │gold.sales_ │ │gold.customer_│ │gold.product_ │ │
│ │summary │ │360 │ │performance │ │
│ └──────┬───────┘ └──────┬───────┘ └──────┬───────┘ │
│ │ │ │ │
│ DOWNSTREAM │ │ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Dashboard │ │ ML Model │ │ Report │ │
│ │ (External) │ │ Training │ │ (External) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │
└───┘
3. Exploring Table Lineage
3.1 Using Catalog Explorer UI
The Catalog Explorer provides visual lineage exploration:
Navigate to Catalog Explorer
Select a table
Click the "Lineage" tab
Expand upstream/downstream nodes
3.2 Querying Lineage via System Tables
System tables provide programmatic access to lineage data.
Find Upstream Dependencies (what feeds this table):
-- Direct upstream tables for a specific table
SELECT
 source_table_catalog,
 source_table_schema,
 source_table_name,
 target_table_catalog,
 target_table_schema,
 target_table_name
FROM system.access.table_lineage
WHERE target_table_full_name = 'production.gold.customer_360'
ORDER BY source_table_full_name;
Find Downstream Dependents (what depends on this table):
-- Direct downstream tables
SELECT
 source_table_full_name,
 target_table_catalog,
 target_table_schema,
 target_table_name
FROM system.access.table_lineage
WHERE source_table_full_name = 'production.silver.orders'
ORDER BY target_table_full_name;
Recursive Lineage (full dependency chain):
-- Full upstream lineage (recursive)
WITH RECURSIVE lineage_chain AS (
 -- Base case: direct parents
 SELECT
 source_table_full_name as table_name,
 target_table_full_name as dependent_on,
 1 as depth,
 ARRAY(source_table_full_name) as path
 FROM system.access.table_lineage
 WHERE target_table_full_name = 'production.gold.customer_360'

 UNION ALL

 -- Recursive case: grandparents, etc.
 SELECT
 l.source_table_full_name,
 c.dependent_on,
 c.depth + 1,
 ARRAY_APPEND(c.path, l.source_table_full_name)
 FROM system.access.table_lineage l
 JOIN lineage_chain c ON l.target_table_full_name = c.table_name
 WHERE c.depth < 10 -- Limit recursion depth
)
SELECT DISTINCT
 table_name,
 depth,
 path
FROM lineage_chain
ORDER BY depth, table_name;
3.3 Column-Level Lineage
Column lineage shows how specific columns flow through transformations.
-- Column-level lineage
SELECT
 source_table_full_name,
 source_column_name,
 target_table_full_name,
 target_column_name
FROM system.access.column_lineage
WHERE target_table_full_name = 'production.gold.customer_360'
ORDER BY target_column_name, source_table_full_name;
Trace a Specific Column:
-- Where does customer_email come from?
WITH RECURSIVE column_trace AS (
 SELECT
 source_table_full_name,
 source_column_name,
 target_table_full_name,
 target_column_name,
 1 as depth
 FROM system.access.column_lineage
 WHERE target_table_full_name = 'production.gold.customer_360'
 AND target_column_name = 'customer_email'

 UNION ALL

 SELECT
 l.source_table_full_name,
 l.source_column_name,
 c.target_table_full_name,
 c.target_column_name,
 c.depth + 1
 FROM system.access.column_lineage l
 JOIN column_trace c ON l.target_table_full_name = c.source_table_full_name
 AND l.target_column_name = c.source_column_name
 WHERE c.depth < 5
)
SELECT * FROM column_trace
ORDER BY depth;
4. Impact Analysis
Impact analysis helps understand the consequences of changes before making them.
4.1 Pre-Change Impact Assessment
Before modifying a table, identify all dependents:
-- Impact analysis: What depends on table X?
SELECT
 target_table_catalog,
 target_table_schema,
 target_table_name,
 target_table_type
FROM system.access.table_lineage
WHERE source_table_full_name = 'production.silver.customers';

-- Include indirect dependents
WITH RECURSIVE impact AS (
 SELECT
 target_table_full_name,
 1 as distance
 FROM system.access.table_lineage
 WHERE source_table_full_name = 'production.silver.customers'

 UNION ALL

 SELECT
 l.target_table_full_name,
 i.distance + 1
 FROM system.access.table_lineage l
 JOIN impact i ON l.source_table_full_name = i.target_table_full_name
 WHERE i.distance < 5
)
SELECT
 target_table_full_name,
 MIN(distance) as min_distance
FROM impact
GROUP BY target_table_full_name
ORDER BY min_distance, target_table_full_name;
4.2 Schema Change Impact
When planning to change a column, find all references:
-- What depends on the 'customer_id' column in customers table?
SELECT DISTINCT
 target_table_full_name,
 target_column_name
FROM system.access.column_lineage
WHERE source_table_full_name = 'production.silver.customers'
 AND source_column_name = 'customer_id';
4.3 Deprecation Planning
Plan table deprecation by identifying all consumers:
-- Find all notebooks/jobs that read from deprecated table
SELECT
 user_identity.email as user,
 request_params.notebook_path as notebook,
 COUNT(*) as query_count,
 MAX(event_time) as last_access
FROM system.access.audit
WHERE request_params.table_full_name = 'production.deprecated.old_table'
 AND action_name = 'commandSubmit'
 AND event_date >= CURRENT_DATE - INTERVAL 30 DAYS
GROUP BY 1, 2
ORDER BY last_access DESC;
5. Audit Logging
Unity Catalog automatically logs all access and administrative actions.
5.1 Audit Log Structure
┌───┐
│ AUDIT LOG CATEGORIES │
├───┤
│ │
│ DATA ACCESS │
│ ├── commandSubmit (SQL queries, DataFrame operations) │
│ ├── generateTemporaryTableCredential (External tool access) │
│ └── getTable (Metadata access) │
│ │
│ PERMISSION CHANGES │
│ ├── grantPrivilege (Permission granted) │
│ ├── revokePrivilege (Permission revoked) │
│ ├── updatePermissions (Bulk permission change) │
│ └── updateOwner (Ownership transfer) │
│ │
│ OBJECT LIFECYCLE │
│ ├── createTable (Table created) │
│ ├── deleteTable (Table deleted) │
│ ├── createCatalog (Catalog created) │
│ ├── createSchema (Schema created) │
│ └── alterTable (Table modified) │
│ │
│ SECURITY EVENTS │
│ ├── authenticate (Login attempts) │
│ ├── tokenCreate (Token created) │
│ └── tokenDelete (Token deleted) │
│ │
└───┘
5.2 Querying Audit Logs
Recent Data Access:
-- Who accessed production tables in the last 24 hours?
SELECT
 event_time,
 user_identity.email as user,
 action_name,
 request_params.table_full_name as table_accessed,
 response.status_code
FROM system.access.audit
WHERE action_name = 'commandSubmit'
 AND event_date = CURRENT_DATE
 AND request_params.table_full_name LIKE 'production.%'
ORDER BY event_time DESC
LIMIT 100;
Permission Changes Audit:
-- All permission changes in the last 7 days
SELECT
 event_time,
 user_identity.email as changed_by,
 action_name,
 request_params.securable_type,
 request_params.securable_full_name,
 request_params.principal,
 request_params.privilege,
 response.status_code
FROM system.access.audit
WHERE action_name IN ('grantPrivilege', 'revokePrivilege')
 AND event_date >= CURRENT_DATE - INTERVAL 7 DAYS
ORDER BY event_time DESC;
Failed Access Attempts:
-- Failed access attempts (potential security issues)
SELECT
 event_time,
 user_identity.email as user,
 action_name,
 request_params.table_full_name as attempted_table,
 response.error_message
FROM system.access.audit
WHERE response.status_code != 200
 AND action_name LIKE '%Table%'
 AND event_date >= CURRENT_DATE - INTERVAL 7 DAYS
ORDER BY event_time DESC;
5.3 Sensitive Data Access Monitoring
Track access to tables containing sensitive information:
-- Create view for PII access monitoring
CREATE OR REPLACE VIEW audit.pii_access_log AS
SELECT
 event_time,
 user_identity.email as user,
 request_params.table_full_name as table_name,
 request_params.command_text as query_text
FROM system.access.audit
WHERE action_name = 'commandSubmit'
 AND (
 request_params.table_full_name LIKE '%.pii.%'
 OR request_params.table_full_name IN (
 'production.hr.employees',
 'production.customers.contact_info',
 'production.finance.payroll'
)
);

-- Alert query for daily review
SELECT
 DATE(event_time) as access_date,
 user as accessor,
 table_name,
 COUNT(*) as access_count
FROM audit.pii_access_log
WHERE event_time >= CURRENT_DATE - INTERVAL 1 DAY
GROUP BY 1, 2, 3
ORDER BY access_count DESC;
6. Compliance Reporting
6.1 GDPR Data Subject Access Request (DSAR)
When a data subject requests their data, lineage helps locate it:
-- Find all tables that may contain customer data
SELECT DISTINCT
 table_catalog,
 table_schema,
 table_name
FROM system.information_schema.columns
WHERE column_name IN ('customer_id', 'email', 'phone', 'name', 'address')
 AND table_catalog = 'production';

-- Check access history for specific customer data
SELECT
 event_time,
 user_identity.email as accessor,
 request_params.table_full_name,
 request_params.command_text
FROM system.access.audit
WHERE request_params.command_text LIKE '%customer_email@example.com%'
 AND event_date >= CURRENT_DATE - INTERVAL 90 DAYS;
6.2 SOX Compliance Report
Financial data access for SOX compliance:
-- Financial data access report
SELECT
 DATE(event_time) as access_date,
 user_identity.email as user,
 request_params.table_full_name as table_name,
 action_name,
 COUNT(*) as access_count
FROM system.access.audit
WHERE request_params.table_full_name LIKE 'production.finance.%'
 AND event_date >= DATE_TRUNC('quarter', CURRENT_DATE)
GROUP BY 1, 2, 3, 4
ORDER BY access_date, user;

-- Privileged access changes to financial data
SELECT
 event_time,
 user_identity.email as changed_by,
 request_params.principal as affected_principal,
 request_params.privilege,
 action_name
FROM system.access.audit
WHERE action_name IN ('grantPrivilege', 'revokePrivilege')
 AND request_params.securable_full_name LIKE 'production.finance.%'
 AND event_date >= DATE_TRUNC('quarter', CURRENT_DATE)
ORDER BY event_time;
6.3 Access Certification Report
Quarterly access review for compliance:
-- Active users with production access
SELECT
 grantee,
 grantee_type,
 table_catalog,
 table_schema,
 privilege_type,
 COUNT(*) as table_count
FROM system.information_schema.table_privileges
WHERE table_catalog = 'production'
GROUP BY 1, 2, 3, 4, 5
ORDER BY grantee, table_schema;

-- Users who haven't accessed data recently (potential cleanup)
WITH active_accessors AS (
 SELECT DISTINCT user_identity.email as user
 FROM system.access.audit
 WHERE action_name = 'commandSubmit'
 AND event_date >= CURRENT_DATE - INTERVAL 90 DAYS
)
SELECT
 tp.grantee as user_with_access,
 aa.user as recent_activity
FROM (
 SELECT DISTINCT grantee
 FROM system.information_schema.table_privileges
 WHERE table_catalog = 'production'
) tp
LEFT JOIN active_accessors aa ON tp.grantee = aa.user
WHERE aa.user IS NULL;
7. Lineage for Data Quality
Lineage helps trace data quality issues to their source.
7.1 Data Quality Issue Investigation
When quality issues are detected, trace back to source:
-- Investigation workflow
-- Step 1: Identify problematic table
-- (Quality monitoring detected issues in gold.customer_360)

-- Step 2: Find upstream sources
SELECT
 source_table_full_name,
 source_column_name,
 target_column_name
FROM system.access.column_lineage
WHERE target_table_full_name = 'production.gold.customer_360';

-- Step 3: Check source data quality
SELECT
 'production.silver.customers' as source_table,
 COUNT(*) as total_rows,
 COUNT(*) FILTER (WHERE customer_id IS NULL) as null_customer_id,
 COUNT(*) FILTER (WHERE email IS NULL) as null_email
FROM production.silver.customers;

-- Step 4: Check recent changes to upstream tables
SELECT
 event_time,
 user_identity.email as modified_by,
 action_name,
 request_params.table_full_name
FROM system.access.audit
WHERE request_params.table_full_name IN (
 SELECT DISTINCT source_table_full_name
 FROM system.access.column_lineage
 WHERE target_table_full_name = 'production.gold.customer_360'
)
AND action_name IN ('alterTable', 'commandSubmit')
AND event_date >= CURRENT_DATE - INTERVAL 7 DAYS
ORDER BY event_time DESC;
7.2 Pipeline Debugging
Trace data through transformation pipeline:
-- Find the job/notebook that created a table
SELECT
 event_time,
 user_identity.email as creator,
 request_params.notebook_path,
 request_params.job_id,
 request_params.run_id
FROM system.access.audit
WHERE action_name = 'createTable'
 AND request_params.table_full_name = 'production.gold.sales_summary'
ORDER BY event_time DESC
LIMIT 1;

-- Check for recent data updates
SELECT
 event_time,
 user_identity.email as updater,
 action_name
FROM system.access.audit
WHERE request_params.table_full_name = 'production.gold.sales_summary'
 AND action_name = 'commandSubmit'
 AND request_params.command_type IN ('INSERT', 'UPDATE', 'MERGE')
 AND event_date >= CURRENT_DATE - INTERVAL 7 DAYS
ORDER BY event_time DESC;
8. Custom Lineage Extension
Unity Catalog captures automatic lineage, but you can extend it for external systems.
8.1 External System Lineage
Document lineage from external systems using table properties:
-- Add source system information
ALTER TABLE production.bronze.salesforce_contacts
SET TBLPROPERTIES (
 'source.system' = 'Salesforce',
 'source.object' = 'Contact',
 'source.sync_frequency' = 'hourly',
 'source.extraction_job' = 'sfdc_extract_job'
);

-- Query external lineage metadata
SELECT
 table_name,
 table_properties['source.system'] as source_system,
 table_properties['source.object'] as source_object
FROM system.information_schema.tables
WHERE table_properties['source.system'] IS NOT NULL;
8.2 Business Process Lineage
Document business process context:
-- Add business context
ALTER TABLE production.gold.monthly_revenue
SET TBLPROPERTIES (
 'business.owner' = 'Finance Team',
 'business.process' = 'Monthly Close',
 'business.consumers' = 'CFO Dashboard, Board Reports',
 'business.sla' = 'Available by 3rd business day'
);
9. Lineage Visualization
9.1 Generating Lineage Diagrams
Export lineage for visualization tools:
Export lineage to DOT format for Graphviz
import json

def export_lineage_to_dot(spark, target_table):
 """Export lineage graph in DOT format"""
 lineage_df = spark.sql(f"""
 SELECT source_table_full_name, target_table_full_name
 FROM system.access.table_lineage
 WHERE target_table_full_name = '{target_table}'
 OR source_table_full_name IN (
 SELECT source_table_full_name
 FROM system.access.table_lineage
 WHERE target_table_full_name = '{target_table}'
)
 """)

 dot_lines = ["digraph lineage {", " rankdir=LR;"]

 for row in lineage_df.collect():
 source = row.source_table_full_name.replace(".", "_")
 target = row.target_table_full_name.replace(".", "_")
 dot_lines.append(f' "{source}" -> "{target}";')

 dot_lines.append("}")

 return "\n".join(dot_lines)

Generate and save
dot_output = export_lineage_to_dot(spark, "production.gold.customer_360")
print(dot_output)
9.2 Interactive Lineage Dashboard
Create a dashboard for lineage exploration:
-- Dashboard query: Table dependency counts
SELECT
 target_table_full_name as table_name,
 COUNT(DISTINCT source_table_full_name) as upstream_count,
 (
 SELECT COUNT(DISTINCT l2.target_table_full_name)
 FROM system.access.table_lineage l2
 WHERE l2.source_table_full_name = l.target_table_full_name
) as downstream_count
FROM system.access.table_lineage l
GROUP BY target_table_full_name
ORDER BY downstream_count DESC;
10. Best Practices
10.1 Lineage Maintenance
	Practice
	Recommendation

	Use Unity Catalog
	All tables should be in Unity Catalog for lineage

	Avoid External Writes
	External writes bypass lineage capture

	Document External Sources
	Use table properties for external system info

	Regular Review
	Periodically verify lineage accuracy

10.2 Audit Log Management
	Practice
	Recommendation

	Retention Policy
	Define retention based on compliance needs

	Regular Review
	Weekly review of security-relevant events

	Alerting
	Set up alerts for suspicious access patterns

	Export
	Archive to long-term storage for compliance

10.3 Compliance
	Practice
	Recommendation

	Tag Sensitive Tables
	Mark PII/sensitive tables for monitoring

	Access Certification
	Quarterly review of access rights

	Change Documentation
	Document all permission changes

	Audit Reports
	Generate regular compliance reports

Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Data Platform Team

image1.png
#MAST=CH
DIGITAL

